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Abstract 

 
There are a number of formalisms and architectures for modeling human performance, but 
there is little guidance on how to go about building useful human models. This is a serious 
problem since human modeling is difficult and full of pitfalls. The intended application of the 
model should play a strong guiding role in model development. We are building an 
engineering model intended to help interface designers predict usability problems -- in 
particular, to alert designers to features of an interface that may increase the risk of certain 
kinds of human error. In reflecting on our experience in building this model, we have 
developed several inter-related principles that have been helpful in directing our investment of 
time and effort. Taken together, these principles suggest a methodology for the development 
of human performance models for complex human-machine systems. 
 

Introduction 
 
When tasks make excessive demands on cognitive and perceptual resources, people 
often make mistakes. In many cases, such mistakes result from a failure to take 
human capabilities into account when designing the procedures and equipment to be 
used in carrying out the task. Good design thus requires methods for determining 
whether procedures and equipment inadvertently facilitate error. 
 
Unfortunately, existing methods for determining compatibility between a human 
operator and the procedures and equipment he or she will use are far from ideal. 
Analytical methods, such as those often found in handbooks, guideline documents, 
or proposed standards, use ad hoc mixtures of domain knowledge, psychological 
findings, common sense, and general human factors design guidelines to predict 
usability problems. Analytical methods are inexpensive, and they can be employed at 
an early stage in a design process. Therefore, recommendations made on the basis of 
such sources may be implementable at relatively low cost. However, analytical 
methods are largely ineffective at predicting the performance impact of new 
equipment and procedures for dynamic, complex tasks under highly variable 
operating conditions. 
 



 

Another possibility is to test human subjects using the new procedures and 
equipment in a simulated task environment. Empirical user testing [Gould88] is 
effective, since actual performance with proposed equipment and procedures is 
directly observed and measured. However, this method tends to be expensive, since 
any proposed equipment must actually be prototyped in some detail and human 
subjects must be recruited. In air traffic control, the need to hire expert subjects for 
long periods of time limits the number of designs that can be examined and inhibits 
the number of refinements that can be tested. It is difficult to find enough expert 
subjects in domains like air traffic control to test adequately even one proposed 
design [Remington90a, Shafto90]. 
 
Some of the benefits of an empirical study may be obtained at lower cost by using a 
computer to simulate task logic, psychological resources, and environmental 
constraints. Human simulation has been used successfully by others to guide design. 
For example, John & Gray [Gray93, John94] simulated telephone operators to 
predict the time-savings that would be achieved with a new workstation design. The 
simulation accurately predicted that the new equipment would actually increase the 
amount of time required to handle calls, thus potentially saving the telephone 
company from a costly mistake. 
 
Seifert and Shafto [Seifert94] surveyed a variety of approaches to cognitive 
modeling. They concluded that different modeling approaches focus to differing 
degrees on three major sources of constraints: task logic, psychological resources, 
and environmental structure. In air traffic control, task logic includes the design of 
equipment and procedures; psychological resources include task-specific knowledge 
as well as general cognitive, perceptual, and motor resources; and environmental 
structure includes both physical and social factors. 
 
No single theory has succeeded in unifying all these types of factors. Perhaps the 
most ambitious practical attempt has been the MIDAS system [Corker93], which 
includes some capability in all three areas and is unusually strong in representing 
environmental structure. The AMODEUS Project [AMODEUS97] includes a 
number of methodologies [May94] with some attention to formal system-modeling 
methods for integrating different classes of constraints. Degani and his colleagues 
[Degani96, Degani97] have also demonstrated the use of formal methods to model 
procedural and environmental constraints, although their approach has not yet been 
extended to the modeling of psychological resources. The Cognition Simulation 
System [CSS, Remington90] represents an approach that is complementary to that of 
Degani et al., focusing on psychological resources and excluding detailed treatment 
of task logic and environmental structure. 
 
Despite these promising lines of current research, many experienced researchers and 
practitioners [Landauer95, for example] remain skeptical about the contribution that 
human-system models can make to the solution of practical design problems. Such 
skepticism is appropriate in the absence of clear demonstrations to the contrary. In 



 

any case, to be useful in the analysis of complex real-world tasks such as air traffic 
control, human-system models must provide a way to integrate constraints on 
performance arising from the sources mentioned above. In specific cases, 
information about these classes of constraints may be differentially available. For 
example, detailed knowledge of perceptual, motor, attentional, and memory 
resources may be available, but little information may be initially available about the 
strategies typically used by experts to overcome these inherent limitations. Further, 
certain information related to the physical ergonomics of the task environment may 
be readily available, while the less tangible constraints of the social and 
communications environment remain largely unknown. For this reason, we need not 
only an architecture which can integrate multiple kinds of constraints, but also a 
methodology which proceeds according to a refinement strategy [Shafto94], first 
incorporating those constraints which are best understood and which most obviously 
contribute to variability in task performance or vulnerability to error.  
 

Our System: Predicting Design-facilitated Error 
 
While there are a number of formalisms and architectures for modeling human 
performance, there is very little guidance on how to go about building useful human 
models. This is a serious problem since human modeling is difficult and full of 
pitfalls.  
 
The intention to apply a model to help analyze designs should strongly constrain 
how the model is constructed.  
 
We are building an engineering model intended to alert interface designers to 
features of an interface that may increase the risk of certain kinds of human error. In 
reflecting on our experience in building this model, we have developed several inter-
related principles that have been helpful in directing our investment of time and 
effort. Taken together, these principles suggest a modeling methodology that can 
integrate knowledge-based, resource-based, and environmental constraints, and 
which can proceed by a refinement strategy from incorporating major factors to 
incorporating subtler ones. 
 
Interface designers often overlook aspects of an interface that facilitate operator 
errors, although in many instances the design problems are obvious once they are 
pointed out [Norman88]. Noticing these design problems becomes especially difficult 
in domains such as air traffic control where interfaces must mediate complex tasks 
carried out in diverse operating conditions. To help remedy this problem, we 
designed a human model specifically to help identify operating conditions in which 
controllers would be especially likely to make errors.  
 
The details of our model, the Architecture for Procedure Execution (APEX), are 
discussed in [Freed96] and [Freed97]. APEX extends the CSS approach originally 
described by Remington et al. [Remington90, cf. Card83]. APEX combines two 



 

major components. The execution component provides the model with knowledge 
encoded as decision-making strategies needed to select action in a complex, 
dynamic, multitasking environment such as air traffic control. Selections are based 
largely on stored rules and procedures. The resource architecture represents a variety 
of human limitations such as the inability to look in more than one direction at a 
time and limited memory capacity. It constrains execution to operate within human 
limits. For example, if the execution component specifies a shift of gaze from one 
location to the other, the resource architecture will allow execution access to 
information about the new location but restrict information about the old. 
 
The example below illustrates the ability of APEX to predict what are sometimes 
called "habit capture errors." The signature of a habit capture error is the execution 
of a habitual action in place of an intended but non-routine action. A common 
example of such an error might be the failure to stop at the store on the way home. 
The intent is formed before leaving work, but cannot be carried out until the car 
reaches the turn-off for the market. However, when that event occurs, instead of 
exiting the highway at the intended exit, the driver proceeds on the normal, habitual 
route. It would not be surprising to note that the frequency of such errors is high 
when drivers are very busy. Observation and anecdotal reports from air traffic 
controllers, however, indicate that habit capture errors occur at least as frequently 
during periods of low workload. A satisfactory account of habit capture errors then 
must explain how they arise in both high and low workload situations. 
 
Example Air Traffic Control Scenario 
 
At a Terminal Radar Control center, one controller will often be assigned to the task 
of guiding planes through a region of airspace called an "arrival sector" (For detailed 
discussions of air traffic controllers’ tasks, see [Stein93] and [Halverson95].) This 
task involves contacting planes at various sector entry points and getting them lined 
up at a safe distance from one another on landing approach to a particular airport. 
Some airports have two parallel runways. In such cases, the controller will form 
planes up into two lines (see Figure 1). Occasionally, a controller will be told that 
one of the two runways is closed and that all planes on approach to land must be 
directed to the remaining open runway. A controller's ability to direct planes 
exclusively to the open runway depends on remembering that the other runway is 
closed. How does the controller remember this important fact? Normally, the 
diversion of all inbound planes to the open runway produces an easily perceived 
reminder. In particular, the controller will detect only a single line of planes on 
approach to the airport, even though two lines (one to each runway) would normally 
be expected. 
 
However, problems can arise in conditions of low workload. With few planes around, 
there is no visually distinct line of planes to either runway. Thus, the usual situation 
in which both runways are available is perceptually indistinguishable from the case 



 

of a single closed runway. The lack of perceptual support would then force the 
controller to rely on memory alone and thus increase the chance of error. 



 



 

 
By helping to analyze such scenarios, APEX can direct an interface designer's 
attention to potential design-facilitated errors that might otherwise be overlooked. 
Moreover, the ability of APEX to make explicit how such errors might occur can 
help indicate the best way to refine an interface. For example, one of the difficulties 
in designing a radar display is balancing the need to present a large volume of 
information against the need to keep the display uncluttered. In this case, by showing 
how the error results from low traffic conditions, the model suggests a clever fix for 
the problem: Use an icon to explicitly represent runway closures, but only display the 
icon in low traffic conditions when it is most needed and produces the least clutter. 
 
Some Principles and an Approach to Human-System Modeling 
 
The basic requirements for APEX were (1) that it could model the performance of 
diverse tasks in complex task environments such as air traffic control, and (2) that its 
performance could vary in human-like ways depending on the design of its interface 
-- in particular, that it show approximately human tendency to err. Our model-
building efforts were driven in part by careful analysis but also in part by trial-and-
error. As patterns emerged regarding what would work and what would not, we 
inferred a set of general guidelines to help direct our efforts more effectively. In most 
cases, these guidelines made a great deal of sense in hindsight, but were not at all 
obvious at the outset. We present the approach that we eventually converged upon as 
a set of six principles, summarized below. We then discuss each in some detail. 
 
1. Make the initial model too powerful rather than too weak. 
2. Extend or refine the model only as required. 
3. Model resource limitations and coping mechanisms together. 
4. Use stipulation in a principled way. 
5. Assume that behavior adapts rationally to the task environment. 
6. Parameters that are of particular interest may be set to exaggerated values. 
 
 

Discussion of Principles 
 
Make the initial model too powerful rather than too weak 
 
Human performance models are often evaluated by comparing their behavior to 
laboratory experimental data. For example, delays in responding to a stimulus in 
dual-task conditions exhibited by the CSS architecture [Remington90] closely 
approximate human delays in similar conditions. The high degree of fit between 
human and model performance is meant to provide evidence for the soundness and 
veridicality of these models. For these kinds of models, the need to characterize the 
details of human response-time distributions in simple, time-pressured tasks is of 
paramount importance.  
 



 

For our purpose, the detailed accuracy of predicted response-time distributions must 
be weighed against the sometimes conflicting requirement that the model operate in 
a complex, multitasking domain. This conflict between accuracy and capability 
arises from limits on our scientific understanding of high-level cognitive tasks such 
as planning, task switching, and decision-making under uncertainty. To incorporate 
these capabilities into a model requires extensive speculation about how humans 
carry out such tasks, supplemented with knowledge-engineering in the domain of 
interest. 
 
For models meant to be evaluated on the degree to which their performance fits 
empirical data, a reluctance to incorporate capable but speculative model elements is 
easily understood. Our goal of predicting performance in complex domains 
prescribes the opposite bias: If human operators exhibit some capability in carrying 
out a task, our model must also have that capability as a prerequisite to predicting 
performance at the task. One consequence of this bias is that our model may tend to 
be overly optimistic about human performance in some instances; the model 
performs effectively in situations where humans would fail. In our view, the increase 
in the model's ability to operate in interesting domains (where the need to predict 
design-facilitated error is greatest) outweighs the reduction in detailed accuracy. 
 
Lacking an empirical basis for modeling certain cognitive activities, functional 
requirements and common sense have shaped the development of some aspects of the 
model. Moreover, we have borrowed and adapted decision-making mechanisms 
developed by artificial intelligence researchers to serve as our model's execution 
component. The executive, derived from a robot control language called RAPs 
[Firby89], extends the action-selection capabilities provided by CSS and GOMS in 
ways that have a great deal of significance for modeling performance in air traffic 
control. These extension include: 
 
?? effective coordination of perceptual, cognitive, and motor resources 
?? diverse mechanisms for handling task interruption, switching, and resumption 
?? planning mechanisms to cope with inherently dynamic and uncertain aspects of 

the task environment 
?? ability to monitor for and recover from plan failure 

 
We discuss this component of the model at greater length in [Freed96], though see 
[Firby89] for a detailed account of its use and capabilities.  
 
Extend or refine the model only as required 
 
Early versions of our current model were developed with the idea that any reliable 
psychological finding that could be incorporated into the model constituted a useful 
addition. Our initial goal was thus to bring together as much psychology, 
neuroscience, anthropometry, and so on as possible. Over time, we found many 



 

occasions in which elements of the model added insufficient value to compensate for 
difficulties they created. 
 
For example, early versions of the model incorporated the finding that human vision 
takes slightly longer to process certain perceptual features than others; color, for 
instance, takes a few milliseconds longer to process than orientation or primitive 
shape. Of the kinds of predictions our model could reliably make, none depended on 
this aspect of the model. In fact, we found it difficult even to imagine situations in 
which useful predictions would arise from this element. Moreover, its inclusion was 
quite costly since it forced simulation mechanisms to consider very brief time 
intervals (one millisecond), thus slowing simulations substantially. 
 
Adding unnecessary detail to the model makes it model slower in simulation, 
increases the amount of effort needed to make future improvements, and makes it 
harder to debug, explain, and evaluate. Therefore, it is important to make sure that 
extensions to the model make it more useful. In our case, that means it should help 
us in highlighting opportunities for operationally significant human error.  
 
Another instructive example concerned our efforts to model time delays in acquiring 
information for a decision task. For example, a controller deciding which runway to 
direct a plane towards must acquire information on such factors as the relative 
number of planes lined up for each alternative runway, the weight of the plane 
(Heavy planes should preferably be sent to the longer runway.), and whether each 
runway is operational. To acquire information about any of these factors from 
memory, a controller would have to employ his/her memory retrieval resource which 
can only be used for one retrieval task at a time [Carrier95].  
 
Since use of the retrieval resource blocks its availability to other decision-making 
tasks (and also delays the current decision task), the amount of time required to 
perform a retrieval can be an important determiner of overall performance. 
Incorporating the determinants of retrieval time into the model would thus seem to 
have great value in predicting performance. However, two other factors suggest the 
need for care in deciding what aspects of memory retrieval should be modeled. First, 
a survey of the literature on memory reveals numerous factors affecting retrieval 
time. Incorporating each of these factors into the model would likely involve a 
lifetime of effort.  
 
Second, controllers typically have alternative ways to evaluate the factors that bear 
on their decisions, each varying in required time and other properties. For example, 
to acquire information about the weight class of a plane, a controller can (a) read the 
weight value off the plane’s data block on the radar display, (b) retrieve that plane’s 
weight from memory, or (c) assume that the plane has the same weight class as most 
other planes. The time required to carry out these methods can differ by orders of 
magnitude. In our model, relying on a default assumption requires no time or 
resources; memory retrieval requires approximate .5 seconds; visual search and 



 

reading require a highly variable amount of time ranging from 0.5 seconds to 10 
seconds or more. Based on the magnitude of these differences, we have assumed that 
model refinements that increase our ability to predict which information acquisition 
method will be used are generally more valuable than refinements that account for 
variance in memory retrieval time.  
 
There are two corollaries to the principle of letting modeling goals drive refinement 
efforts. First, as illustrated by the example of modeling differential propagation rates 
of low-level visual features, one should prefer to maximize the temporal coarseness 
of the model with respect to the desired classes of predictions. Model elements that 
rely on temporally fine-grained activities should be included only if their inclusion 
accounts for significant differences in overall task performance. Second, as 
illustrated by the memory modeling example, prefer to model the largest sources of 
performance variability in a given activity before modeling smaller sources. 
 
Model resource limitations and coping mechanisms together 
 
In our view, much of people's tendency to err can be explained as a consequence of 
limitations on perceptual, cognitive, and motor resources. We now believe, however, 
that the most obvious ways of linking errors to resource limitations are misleading. 
In particular, each limitation can be associated with a set of behaviors used to cope 
with that limit. These coping behaviors rely on assumed regularities in the world and 
on other assumptions that can sometimes prove false. The imperfect reliability of a 
coping method's underlying assumptions renders people susceptible to error. This is 
something of a reconceptualization of the problem, as it moves the problem locus 
from peripheral resources which are somehow “overrun” by task demands, to the 
decision making and plan execution component of the model. 
 
For example, people cope with a restricted field of view by periodically scanning 
their environment. Mechanisms for guiding the scan must guess where the most 
interesting place to look lies at any given time. By making some assumptions, for 
example, that certain conditions will persist for a while after they are observed, 
scanning mechanisms can perform well much of the time. But even reliable 
assumptions are sometimes wrong. People will look in the wrong place, fail to 
observe something important, and make an error as a result. Of course, people have 
no choice about whether to scan or not; if a person were somehow prevented from 
scanning, many tasks would be impossible. By forcing people to guess where to look, 
a limited field of view enables error. 
 
Human resource limits are much easier to identify and represent in a model than are 
the subtle and varied strategies people use to cope with those limits. For example, 
people have limited ability to ensure that the things they have to remember “come to 
mind” at the right time. Modeling this requires the separation of the processes that 
determine the result of a retrieval attempt from those that initiate a memory retrieval 



 

attempt. Retrieval initiation happens only when triggered by certain conditions 
external to the memory model itself.  
 
People cope with memory limitations by maintenance rehearsal, writing notes to 
themselves, setting alarms, and other methods. Unless the model includes 
mechanisms needed to carry out these strategies, it will tend to under-predict human 
performance -- that is, it will predict failures of memory where people would not 
actually fail. As discussed above, our purposes require exaggerating rather than 
understating expert performance when an accurate model is not possible.  
 
Use stipulation in a principled way 
 
While it is challenging and scientifically worthwhile to show how intelligent 
behavior can emerge from the harmonious interplay of myriad low-level 
components, practical considerations require us to model these low-level component 
processes abstractly. In some cases, the need for abstract process models arises from 
the practical considerations already discussed -- that is, to avoid complicating the 
model with elements that add little to its power to make useful predictions. In other 
cases, scientific ignorance about how processes are carried out forces us to stipulate 
that a process occurs without specifying any mechanism. 
 
For example, in designing model elements representing human vision, we had to 
contend with the fact that no complete and detailed model of human visual 
processing currently exists; in fact, no existing model of visual processing, including 
robot vision systems designed without the requirement that they conform to human 
methods or limitations, can achieve anything close to human performance at tasks 
like dynamic pattern recognition and visually guided navigation. Thus, we could not 
have represented the mechanism of normal visual function, even if doing so would 
have been worthwhile in terms of previously described goals.  
 
Instead, our model requires that the simulated controller operate in a perceptually 
simplified world in which a detailed representation of the visual scene, for example, 
as an array of intensity- and chroma-valued pixels, is abandoned in favor of 
qualitative propositions representing properties of visible objects. For instance, to 
represent planes observable on a radar display, the world model generates 
propositions such as  
 
(shape visual-obj-27 airplane-icon .2)  
(color visual-obj-27 green .5) 
(location visual-obj-27 135 68 .1)  
 
which together represent a green plane icon located at a given position relative to a 
reference point.  
 
To simulate nominal visual performance, the vision model simply passes 
propositions from the world to cognitive model elements. Thus, decision-making 



 

elements would, in some cases, simply be informed that there is an object at location 
(135,68) without vision having to derive this information from any more 
fundamental representation.  
 
Given our goal of accounting for the effect of interface attributes on controllers’ 
performance, the need to eliminate any explicit representation of visual processing 
poses an important problem: How can we account for the effect of interface attributes 
such as color, icon shape, and the spatial arrangement of visual objects except by 
allowing them to affect processing? To illustrate our approach, consider how the 
model handles direction of gaze, one of the most important determinants of what 
visual information is accessible at a given moment. 
 
The first step was to construct a basic model of visual processing that would 
successfully observe every detail of the visual environment at all times. As described, 
this simply required a mechanism that would pass propositions describing the visual 
scene from the world model to cognitive mechanisms. Real human visual 
performance is, of course, limited to observing objects in one’s field of view. 
Moreover, the discriminability of object features declines with an object’s angular 
distance from fixation (the center of gaze). To model this, we require that 
propositions generated by the world model include information on the 
discriminability of the visual feature each represents. For example, the proposition  
 
(shape visual-obj-27 airplane-icon .2)  
 
means that visual-object-27 can be recognized as an airplane-icon as 
long as its distance in angular degrees from the agent’s point of fixation lies within a 
certain range. In this case, the given proposition becomes accessible to cognition if 
features subtending .2 degrees of visual angle can be discriminated at the object’s 
current distance from fixation. 
 
This is an unusual way of looking at the process of acquiring information, though 
similar to the approach used in MIDAS [Corker93]. Rather than modeling the 
process of constructing information from perceptual building-blocks, all potentially 
relevant information items are considered potentially available; we simply stipulate 
that the constructive processes operate successfully. The task of the model then is to 
determine which potentially available items are actually available in a given 
situation.  
 
A generalization of this approach is also used in non-perceptual components of the 
model. In general, nominal performance is stipulated, and factors that produce 
deviations form nominal performance are modeled separately and allowed to 
modulate nominal performance. 
 
Assume that behavior adapts rationally to the environment 
 



 

For most performance variables of interest, the amount of practice constitutes the 
single largest source of variability. People become adapted to their task environment 
over time, gradually becoming more effective in a number of ways [Anderson90, 
Ericsson91]. For the purpose of modeling highly skilled agents such as air traffic 
controllers, this process has several important consequences. 
 
First, people will, over time, come to learn about and rely on stable attributes of the 
task environment. For instance, the air traffic control scenario discussed earlier, the 
controller relied on the (false) default assumption that both runways were available. 
Constructing a model to predict such an error thus requires determining that certain 
conditions are much more common than others and are likely to be treated as default 
assumptions by experienced operators. Similarly, the controller in our example relied 
on a perceptual cue, a linear arrangement of plane icons on the radar display, to 
signal that a non-default condition might hold and that a memory retrieval action 
was warranted. Thus our model requires determining what kinds of perceptual cues 
are likely to be available in the environment and to be exploited by experienced 
operators to support cognition. 
 
A second consequence of adaptation that should be considered in the construction of 
models such as APEX is the fact that, over time, people will learn which policies and 
methods work and which tend to fail. This significantly complicates analyses of the 
effect of innate human resource limitations on task performance. For example, 
experienced grocery shoppers will come to learn that relying on memory to retain the 
list of desired goods does not tend to work very well. Experienced shoppers will 
almost inevitably come to rely on some strategy that circumvents the limitations on 
their memory [Salthouse91]. For example, some will rely on a written list; others 
might learn to scan the shelves for needed items, thus replacing a difficult memory 
task (recall) with an easier one (recognition). 
 
To account for the effect of limitation-circumventing strategies, our model includes a 
variety of mechanisms for representing the proceduralized behaviors that incorporate 
these strategies. For instance, procedures representable in our model can integrate 
physical and cognitive actions to carry out visual search tasks that result in the 
initiation of a memory retrieval followed by a decision-making task that depends on 
the output of the memory retrieval. However, the ability to represent such procedures 
is not enough to enable us to predict the performance of experienced practitioners of 
a task. It is also necessary to know what strategies they will tend to employ, and thus 
what procedures should be represented. We discuss this issue in [Freed96]. 
 
The assumption that experienced practitioners will have adapted to their task 
environment provides a basis for setting otherwise free parameters in the model. For 
example, our account of prospective memory, a key element of the model for 
predicting habit capture errors, assumes that the likelihood that a person will attempt 
to verify a default assumption by retrieving information from memory declines over 
time. For example, the air traffic controller in the example scenario became less 



 

likely to retrieve knowledge about the runway closure from memory as time elapsed 
since the last time s/he was reminded of the closure by a visible anomaly on the radar 
display.  
 
Constructing the model required making some assumption about the rate at which 
retrieval likelihood would decline. Note that this value could, in principle, be 
obtained in a controlled experiment. However, performing such an experiment would 
undermine the whole purpose of the modeling effort which is to provide performance 
estimates in the absence of empirical testing. Our approach was to assume that the 
retrieval-attempt likelihood function depended only on considerations of utility, and 
not on any innate limitations.  
 
In particular, we considered three factors. First, air traffic controllers must generally 
learn to minimize the use of limited cognitive resources in decision-making to cope 
with potentially very high workload. Thus, optimal decision-making performance 
must avoid memory retrieval whenever the result is likely to confirm a default 
assumption.  
 
Second, regularities in the duration of a given non-default condition indicate that, 
after a certain interval, decision-mechanisms can once again reliably assume the 
default.  
 
Third, regularities in the rate at which perceptual indicators of the non-default 
condition are observed can provide an accurate determination of when the default 
condition has resumed -- that is, if an indicator is usually observed within a given 
interval, the absence of that interval for the interval can be treated as evidence for 
the default. 
 
We estimate memory-retrieval likelihood 
 
mrl = min[D(p),I(p)] 
 
where D(p) is the maximum duration of the non-default interval with likelihood 
(confidence) p, and I is the maximum interval between successive observations of a 
non-default indicator with likelihood p. 
 
We note that functional estimates of this sort are famous for producing bad theories 
in certain areas of science such as evolutionary biology. But in the absence of 
extensive empirical research, the assumption that parameters will have been set by 
some optimizing adaptive process [Anderson90] will often be a good approximation 
and will usually constitute the most conservative available guess. 
 
Parameters that are of particular interest may be isolated or set to exaggerated 
values. 
  



 

Our purpose involves highlighting vulnerability to human error in complex, dynamic 
domains. Like many other domains where predicting design-facilitated error would 
be useful, operating in air traffic control requires a powerful (highly capable) model 
of how actions are selected. Furthermore, the air traffic control system is operated by 
highly skilled individuals, and the system itself is designed to prevent or manage 
errors with extremely high success rates. 
 
For our purposes, it is not particularly useful to simulate the actual (almost 
negligible) error rates of the existing air traffic control system. Therefore, once we 
have built a capable model and selectively introduced constraints and coping 
mechanisms, the user should be able to choose parameter values that exaggerate the 
simulated operator's vulnerability to error. For example, the model may be 
parameterized with unrealistically pessimistic assumptions about working memory 
capacity, in order to exaggerate the dependence upon perceptual sources of 
information. Lewis and Polk [Lewis94] used this technique to model an aviation 
scenario in Soar in such a way as to highlight the need for perceptual support: they 
used a Soar model with a zero-capacity working memory. 
 
The need for this bias stems from the fact that a designer is usually interested in 
counteracting even low probability errors, especially when the consequences of error 
are high or where the task will be repeated often. If low probability errors only 
showed up in simulation with low probability, the model would often fail to draw 
attention to important design flaws. 
 

Conclusion 
 
In modeling something as complex and difficult to specify as a human operator, 
decisions about how to direct model development effort have enormous impact in 
determining the utility of the resulting model. We have come to believe that the 
intended application of the model should play a dominant role in making such 
decisions. Our purpose in this case was to highlight the risk of certain kinds of 
human error. The principles we have developed -- although each one has arguably 
been stated by someone at some time -- are often counter-intuitive; for example, put 
as little into the model as possible, not as much as possible; perhaps set key 
parameters to intentionally unrealistic values, rather than investing time and effort to 
estimate "correct" values. Taken together, these principles suggest a methodology for 
the development of human performance models for complex human-machine 
systems: what to do first, what to do later, and what not to do at all.  
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